A Dispersion Modelling Study of the Impact of Odour from the Proposed Broiler Chicken Rearing Houses at Cefnau Bach, near Llangadfan, Welshpool, in Powys

Prepared by Phil Edgington

AS Modelling & Data Ltd.

Email: philedgington@asmodata.co.uk

Telephone: 01952 462500

6th October 2016

1. Introduction

AS Modelling & Data Ltd. has been instructed by John Ward, on behalf of the applicant Mills Poultry Ltd. to use computer modelling to assess the impact of odour emissions from the proposed new broiler chicken rearing unit at Cefnau Bach, near Llangadfan, Welshpool, in Powys.

Odour emission rates from the proposed poultry houses have been assessed and quantified based upon an emissions model that takes into account the likely internal odour concentrations and ventilation rates of the poultry houses. The odour emission rates so obtained have then been used as inputs to an atmospheric dispersion model which calculates odour exposure levels in the surrounding area.

This report is arranged in the following manner:

- Section 2 provides relevant details of the site and potentially sensitive receptors in the area.
- Section 3 provides some general information on odour, details of the method used to
 estimate odour emissions from the proposed poultry houses, relevant guidelines and
 legislation on exposure limits and where relevant, details of likely background levels of
 odour.
- Section 4 provides some information about ADMS, the dispersion model used for this study and details the modelling parameters and procedures.
- Section 5 contains the results of the modelling.
- Section 6 provides a discussion of the results and conclusions.

2. Background Details

It is proposed that a new broiler chicken rearing unit be constructed on a green field site at Cefnau Bach, a rural area north of the village of Llangadfan. The surrounding land is largely agricultural, although there are some wooded areas nearby. The site is located in a hilly area as the land rises above the Afon Banwy valley, at an elevation of around 230 m.

The proposal involves the construction of four poultry houses which would be used to rear up to 250,000 broiler chickens. These poultry houses would be ventilated using uncapped high velocity ridge or roof fans with side inlets.

There are two residences within 400 m of the proposed poultry unit, namely the farmsteads at Bryngwalia and Pant-gwyn. There are also residences further afield, and a school and commercial properties 1 km to the south-west in the village of Llangadfan.

A map of the surrounding area is provided in Figure 1; in the figure, the green field site of the proposed new poultry unit at Cefnau Bach is outlined in red.

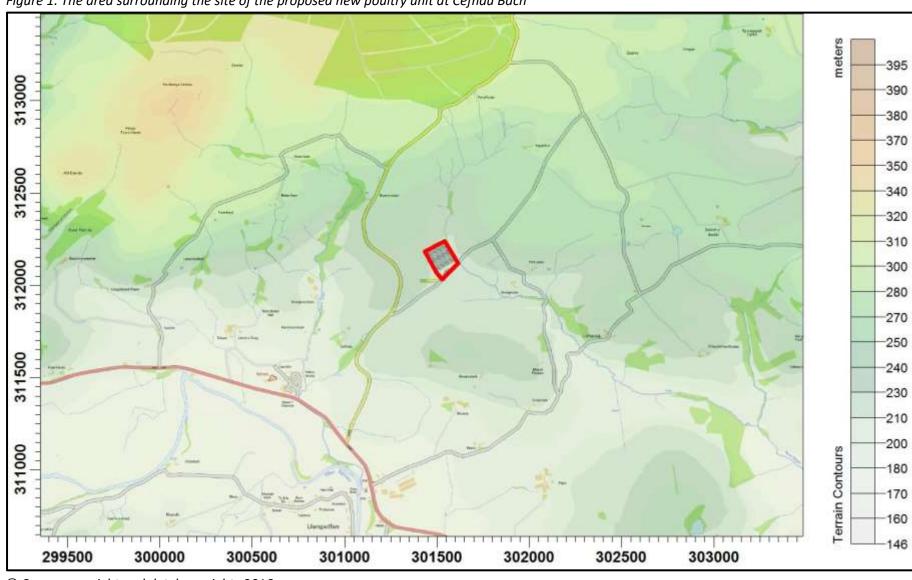


Figure 1. The area surrounding the site of the proposed new poultry unit at Cefnau Bach

© Crown copyright and database rights 2016.

3. Odour, Emission Rates, Exposure Limits & Background Levels

3.1 Odour concentration, averaging times, percentiles and FIDOR

Odour concentration is expressed in terms of European Odour Units per metre cubed of air (ou_E/m^3) . The following definitions and descriptions of how an odour might be perceived by a human with an average sense of smell may be useful, however, it should be noted that within a human population there is considerable variation in acuity of sense of smell.

- 1.0 ou_F/m³ is defined as the limit of detection in laboratory conditions.
- At 2.0 − 3.0 ou_E/m³, a particular odour might be detected against background odours in an open environment.
- When the concentration reaches around 5.0 ou_E/m³, a particular odour will usually be recognisable, if known, but would usually be described as faint.
- At 10.0 ou_E/m³, most would describe the intensity of the odour as moderate or strong and
 if persistent, it is likely that the odour would become intrusive.

The character, or hedonic tone, of an odour is also important; typically, odours are grouped into three categories.

Most offensive:

- Processes involving decaying animal or fish remains.
- Processes involving septic effluent or sludge.
- Biological landfill odours.

Moderately offensive:

- Intensive livestock rearing.
- Fat frying (food processing).
- Sugar beet processing.
- Well aerated green waste composting.

Less offensive:

- Brewery.
- Confectionery.
- Coffee roasting.
- Bakery.

Dispersion models usually calculate hourly mean odour concentrations and Environment Agency guidelines and findings from UK Water Industry Research (UKWIR) are also framed in terms of hourly mean odour concentration.

The Environment Agency guidelines and findings from UKWIR use the 98th percentile hourly mean; this is the hourly mean odour concentration that is equalled or exceeded for 2% of the time period considered, which is typically one year. The use of the 98th percentile statistic allows for some consideration of both frequency and intensity of the odours.

At some distance from a source, it would be unusual if odour concentration remained constant for an hour and in reality, due to air turbulence and changes in wind direction, short term fluctuations in concentration are observed. Therefore, although average exposure levels may be below the detection threshold, or a particular guideline, a population may be exposed to short term concentrations which are higher than the hourly average. It should be noted that a fluctuating odour is often more noticeable than a steady background odour at a low concentration. It is implicit that within the model's hourly averaging time and the Environment Agency guidelines and findings from UKWIR that there would be variation in the odour concentration around this mean, i.e. there would be short periods when odour concentration would be higher than the mean and lower than the mean.

The FIDOR acronym is a useful reminder of the factors that will determine the degree of odour pollution:

- Frequency of detection.
- Intensity as perceived.
- Duration of exposure.
- Offensiveness.
- Receptor sensitivity.

3.2 Environment Agency guidelines

In April 2011, the Environment Agency published H4 Odour Management guidance (H4). In Appendix 3 – Modelling Odour Exposure, benchmark exposure levels are provided. The benchmarks are based on the 98th percentile of hourly mean concentrations of odour modelled over a year at the site/installation boundary. The benchmarks are:

- 1.5 ou_F/m³ for most offensive odours.
- 3.0 ou_F/m³ for moderately offensive odours.
- 6.0 ou_E/m³ for less offensive odours.

Any modelled results that project exposures above these benchmark levels, after taking uncertainty into account, indicates the likelihood of unacceptable odour pollution.

3.3 UK Water Industry Research findings

The main source of research into odour impacts in the UK has been the wastewater industry. An indepth study of the correlation between modelled odour impacts and human response was published by UKWIR in 2001. This was based on a review of the correlation between reported odour complaints and modelled odour impacts in relation to nine wastewater treatment works in the UK with on-going odour complaints. The findings of this research and subsequent UKWIR research indicated the following, based on the modelled 98th percentile of hourly mean concentrations of odour:

- At below 5.0 ou_E/m³, complaints are relatively rare at only 3% of the total registered.
- At between 5.0 ou_E/m³ and 10.0 ou_E/m³, a significant proportion of total registered complaints occur, 38% of the total.
- The majority of complaints occur in areas of modelled exposures of greater than 10.0 ou_F/m^3 , 59% of the total.

3.4 Choice of odour benchmarks for this study

Odours from poultry rearing are usually placed in the moderately offensive category. Therefore, for this study, the Environment Agency's benchmark for moderately offensive odours, a 98^{th} percentile hourly mean of $3.0 \text{ ou}_\text{E}/\text{m}^3$ over a one year period, is used to assess the impact of odour emissions from the proposed poultry unit at potentially sensitive receptors in the surrounding area. The UKWIR research is also considered.

3.5 Quantification of odour emissions

Odour emission rates from broiler houses depend on many factors and are highly variable. At the beginning of a crop cycle, when chicks are small, litter is clean and only minimum ventilation is required, the odour emission rate may be small. Towards the end of the crop, odour production within the poultry housing increases rapidly and ventilation requirements are greater, particularly in hot weather, therefore emission rates are considerably greater than at the beginning of the crop.

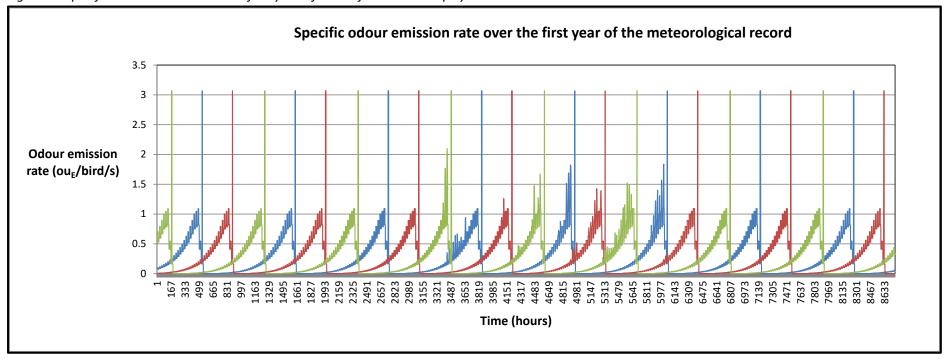
Peak odour emission rates are likely to occur when the housing is cleared of spent litter at the end of each crop. There is little available information on the magnitude of this peak emission, but it is likely to be greater than any emission that might occur when there are birds in the house. The time taken to perform the operation is usually around two hours per shed and it is normal to maintain ventilation during this time. There are measures that can be taken to minimise odour production whilst the housing is being cleared of spent litter and there is usually some discretion as to when the operation is carried out; therefore, to avoid high odour levels at nearby sensitive receptors, it may be possible to time the operation to coincide with winds blowing in a favourable direction.

To calculate an odour emission rate it is necessary to know the internal odour concentration and ventilation rate of the poultry house. For the calculation, the internal concentration is assumed to be a function of the age of the crop and the stocking density.

The internal concentrations used in the calculations increase exponentially from $300 \text{ ou}_E/\text{m}^3$ at day 1 of the crop, to approximately $700 \text{ ou}_E/\text{m}^3$ at day 16 of the crop, to approximately $1,800 \text{ ou}_E/\text{m}^3$ at day 30 of the crop and approximately $2,300 \text{ ou}_E/\text{m}^3$ at day 34 of the crop. These figures are obtained from a review of available literature and are based primarily on Robertson *et al.* (2002).

The ventilation rates used in the calculations are based on industry practices and standard bird growth factors. Minimum ventilation rates are as those of an operational poultry house and maximum ventilation rates are based on Defra guidelines. Target internal temperature is 33 Celsius at the beginning of the crop and is decreased to 22 Celsius by day 34 of the crop. If the external temperature is 7 Celsius, or more, lower than the target temperature, minimum ventilation only is assumed for the calculation. Above this, ventilation rates are increased in proportion to the difference between ambient temperature and target internal temperature. A maximum transitional ventilation rate (35% of the maximum possible ventilation rate) is reached when the ambient temperature is equal to the target temperature. A high ventilation rate (70% maximum possible ventilation rate) is reached when the temperature is 4 degrees above target and if external temperature is above 33 Celsius the maximum ventilation rate is assumed.

At high ventilation rates, it is likely that internal odour concentrations fall because odour is extracted much faster than it is created. Therefore, if the calculated ventilation rate exceeds that required to replace the volume of air in the house every 5 minutes, internal concentrations are reduced (by a factor of the square root of 7.5 times the shed volume/divided by the ventilation rate as an hourly figure).


Based upon these principles, an emission rate for each hour of the period modelled is calculated by multiplying the concentration by the ventilation rate. Both the crop length and period the housing is empty can be varied. An estimation of the emission during the cleaning out process can also be included. In this case it is assumed that the houses are cleared sequentially and each house takes 2 hours to clear.

In this case it is assumed for the calculations that the crop length is 36 days, with 20% thinning of the birds at day 33, and that there is an empty period of 10 days after each crop. To provide robust statistics, three sets of calculations were performed; the first with the first day of the meteorological record coinciding with day 1 of the crop cycle, the second coinciding with day 16 of the crop and the third coinciding with day 30 of the crop. A summary of the emission rates used in this study is provided in Table 1. It should be noted that the figures in this table refer to the whole of the crop length whilst most figures quoted in literature are figures obtained from the latter stages of the crop cycle and therefore should not be compared directly to the AS Modelling & Data Ltd. figures in the table. The specific odour emission rate used for the clearing process is approximately $3.05 \text{ ou}_\text{E}/\text{bird/s}$ and the 98^{th} percentile emission rate is approximately $1.05 \text{ ou}_\text{E}/\text{bird/s}$. As an example, a graph of the specific emission rate over the first year of the meteorological record for each of the three crop cycles is shown in Figure 2.

Table 1. Summary of odour emission rates (average/maximum of all 3 cycles)

Emission rate (ou _E /s per bird as stocked during crop)						
Season	Average	Night-time Average	Day-time Average	Maximum		
Winter	0.246	0.221	0.295	1.090		
Spring	0.264	0.220	0.307	2.200		
Summer	0.291	0.220	0.333	2.327		
Autumn	0.255	0.219	0.292	1.453		

Figure 2. Specific emission rate over the first year of each of the three crop cycles

4. The Atmospheric Dispersion Modelling System (ADMS) and Model Parameters

The Atmospheric Dispersion Modelling System (ADMS) ADMS 5 is a new generation Gaussian plume air dispersion model, which means that the atmospheric boundary layer properties are characterised by two parameters; the boundary layer depth and the Monin-Obukhov length rather than in terms of the single parameter Pasquill-Gifford class.

Dispersion under convective meteorological conditions uses a skewed Gaussian concentration distribution (shown by validation studies to be a better representation than a symmetrical Gaussian expression).

ADMS has a number of model options including: dry and wet deposition; NO_x chemistry; impacts of hills, variable roughness, buildings and coastlines; puffs; fluctuations; odours; radioactivity decay (and γ -ray dose); condensed plume visibility; time varying sources and inclusion of background concentrations.

ADMS has an in-built meteorological pre-processor that allows flexible input of meteorological data both standard and more specialist. Hourly sequential and statistical data can be processed and all input and output meteorological variables are written to a file after processing.

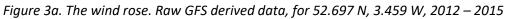
The user defines the pollutant, the averaging time (which may be an annual average or a shorter period), which percentiles and exceedance values to calculate, whether a rolling average is required or not and the output units. The output options are designed to be flexible to cater for the variety of air quality limits, which can vary from country to country and are subject to revision.

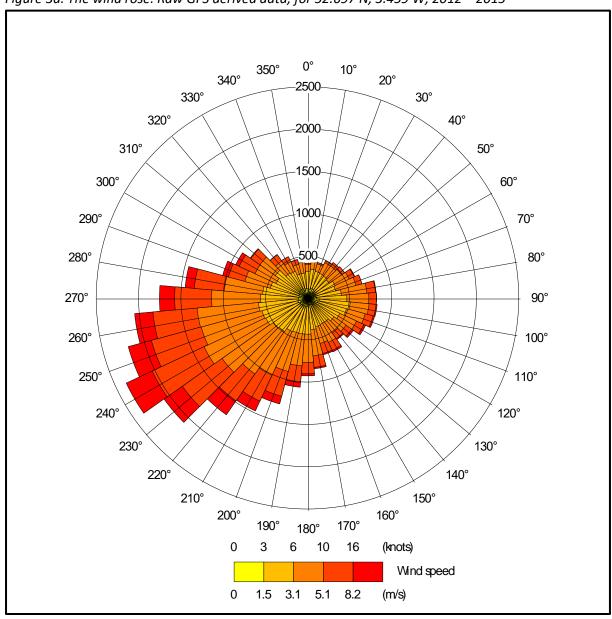
4.1 Meteorological data

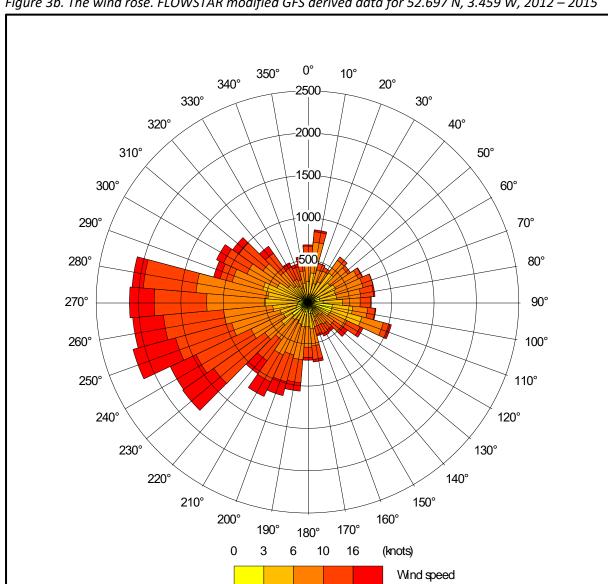
Computer modelling of dispersion requires hourly sequential meteorological data and to provide robust statistics, the record should be of a suitable length; preferably four years or longer.

The meteorological data used in this study is obtained from assimilation and short term forecast fields of the Numerical Weather Prediction (NWP) system known as the Global Forecast System (GFS). Data from the meteorological recording stations at Lake Vrynwy, Shobdon, Shawbury and Trawscoed has also been used.

The GFS is a spectral model and data are archived at a horizontal resolution of 0.25 degrees, which is approximately 25 km over the UK (formerly 0.5 degrees, or approximately 50 km). The GFS resolution adequately captures major topographical features and the broad-scale characteristics of the weather over the UK. Smaller scale topological features may be included in the dispersion modelling by using the flow field module of ADMS (FLOWSTAR). The use of NWP data has advantages over traditional meteorological records because:


- Calm periods in traditional observational records may be over represented, this is because the instrumentation used may not record wind speeds below approximately 0.5 m/s and start up wind speeds may be greater than 1.0 m/s. In NWP data, the wind speed is continuous down to 0.0 m/s, allowing the calms module of ADMS to function correctly.
- Traditional records may include very local deviations from the broad-scale wind flow that would not necessarily be representative of the site being modelled; these deviations are difficult to identify and remove from a meteorological record. Conversely, local effects at the site being modelled are relatively easy to impose on the broad-scale flow and provided horizontal resolution is not too great, the meteorological records from NWP data may be expected to represent well the broad-scale flow.
- Information on the state of the atmosphere above ground level which would otherwise be estimated by the meteorological pre-processor may be included explicitly.


The closest meteorological recording station that records all the parameters required for atmospheric dispersion modelling is at Lake Vrynwy, approximately 8 km to the north of Cefnau Bach. Data from the meteorological recording stations at Shobdon, Shawbury and Trawscoed has also been considered; these stations are all approximately equidistant from Cefnau Bach. However, neither Lake Vyrnwy, Shobdon, Shawbury, nor Trawscoed has an aspect that in any way could be considered similar to Cefnau Bach; therefore, it should be noted that the frequency of winds from a particular direction in the Lake Vyrnwy, Shobdon, Shawbury, or Trawscoed data may be either high or low in comparison to what might occur at Cefnau Bach, which means mean concentrations downwind may be either over or under predicted. Additionally, periods of light winds and calms cannot be properly modelled, which means that, in general, predictions may in some circumstances be somewhat lower than would be obtained if calm conditions were considered. Therefore, it is the opinion of AS Modelling & Data Ltd. that the results obtained using the GFS data, particularly when modified by using FLOWSTAR, should be given more weight when interpreting the results of the modelling.

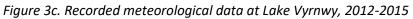

The wind rose for the raw GFS data at the site of Cefnau Bach is shown in Figure 3a.

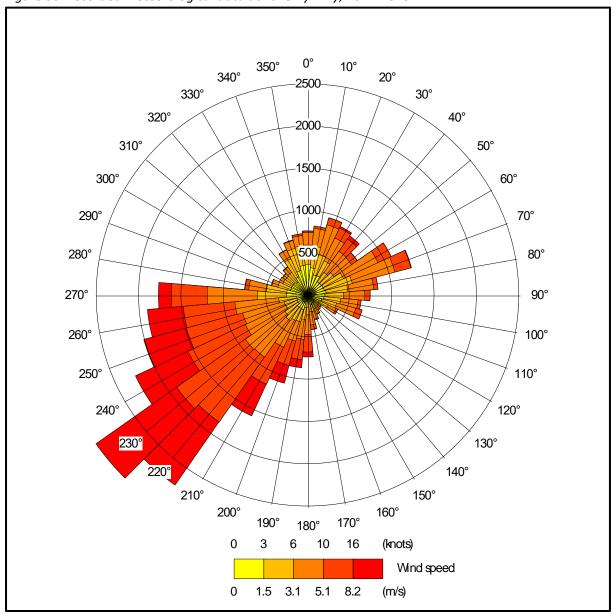
The raw GFS wind speeds and directions are modified by the treatment of roughness lengths (see Section 4.7) and because terrain data is included in the modelling. The terrain and roughness length modified wind rose for the site of Cefnau Bach is shown in Figure 3b. Note that, given the degree of modification of wind speeds and directions at the location of the proposed new poultry unit, elsewhere in the modelling domain the modified wind roses may differ more markedly and that the resolution of the wind field in terrain runs is 200 m.

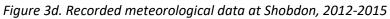
The wind roses for Lake Vyrnwy, Shobdon, RAF Shawbury and Trawscoed are shown in Figures 3c, 3d, 3e, and 3f respectively.

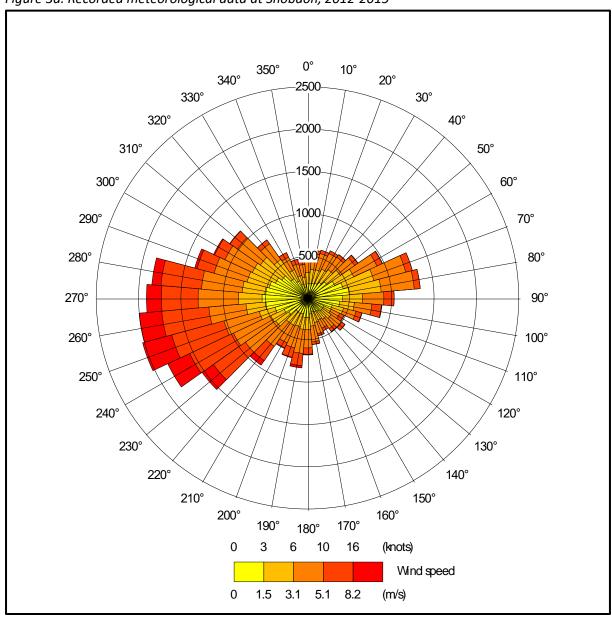
0

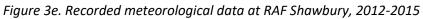
1.5

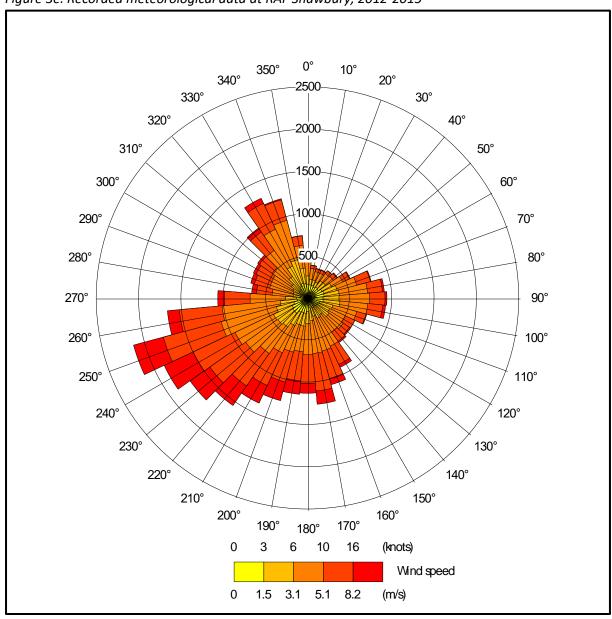

3.1

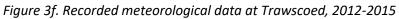

5.1

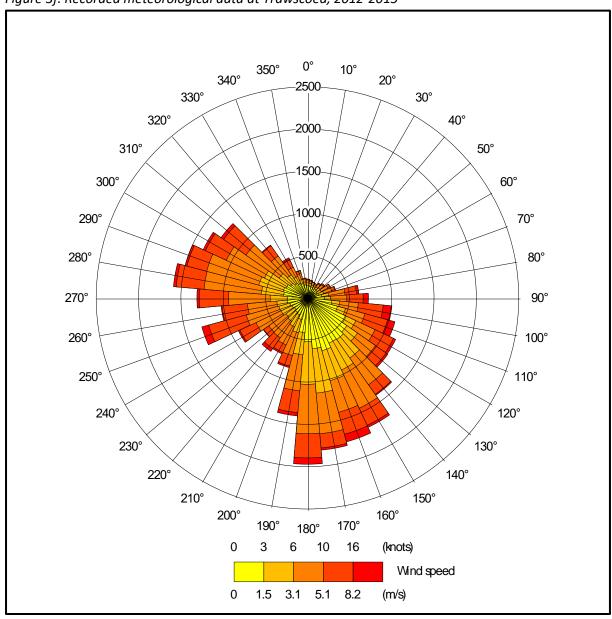

8.2


(m/s)


Figure 3b. The wind rose. FLOWSTAR modified GFS derived data for 52.697 N, 3.459 W, 2012 – 2015







4.2 Emission sources

Emissions from the chimneys of the uncapped high speed fans that would be used to ventilate the proposed new poultry houses are represented by three point sources per house within ADMS (PR1-4; 1, 2 & 3).

Details of these point source parameters are shown in Table 2. The positions of the point sources used are shown in Figure 4, where they are marked by red star symbols.

Table 2. Point source parameters

Source ID	Height (m)	Diameter (m)	Efflux velocity (m/s)	Emission temperature (°C)	Emission rate per source (ou _E /s)
PR1 1, 2 & 3	6.5	0.8	10.0	Variable ¹	Variable ¹
PR2 1, 2 & 3	6.5	0.8	10.0	Variable ¹	Variable ¹
PR3 1, 2 & 3	6.5	0.8	10.0	Variable ¹	Variable ¹
PR4 1, 2 & 3	6.5	0.8	10.0	Variable ¹	Variable ¹

^{1.} Dependent on crop stage and ambient temperature.

-250 BARN

Figure 4. The positions of modelled buildings & sources

© Crown copyright and database rights 2016.

4.3 Modelled buildings

The structure of the proposed new poultry houses and other nearby buildings may affect the odour plumes from the point sources. Therefore, the buildings are modelled within ADMS. The positions of the modelled buildings may be seen in Figure 4, where they are marked by grey rectangles.

4.4 Discrete receptors

Fifteen discrete receptors have been defined at a selection of nearby residences and commercial properties that are within approximately 1,200 m of Cefnau Bach. These receptors are defined at a height of 1.5 m above ground level within ADMS and their positions may be seen in Figure 5, where they are marked by enumerated pint rectangles.

4.5 Nested Cartesian grid

To produce the contour plots presented in Section 5 of this report, a nested Cartesian grid has been defined within ADMS. The grid receptors are defined at 1.5 m above ground level within ADMS. The positions of the receptors may be seen in Figure 5, where they are marked by green crosses.

4.6 Terrain data

There are some slopes and hills that may affect wind flow and dispersion of odour in the area around the site of the proposed new poultry unit at Cefnau Bach; therefore, terrain has been considered in the modelling. The terrain data used are derived from the Ordnance Survey 50 m Digital Elevation Model. The terrain domain is 6.4 km by 6.4 km and FLOWSTAR is run at a resolution of 32 x 32 points; therefore, the effective model resolution is 200 m.

4.7 Other model parameters

A fixed surface roughness length of 0.25 m has been applied over the entire modelling domain. As a precautionary measure, the GFS meteorological data is assumed to have a roughness length of 0.225 m. The effect of the difference in roughness length is precautionary as it increases the frequency of low wind speeds and the stability and therefore increases predicted ground level concentrations. The Lake Vyrnwy, Shobdon, RAF Shawbury and Trawscoed data is assumed to have a roughness length of 0.25 m.

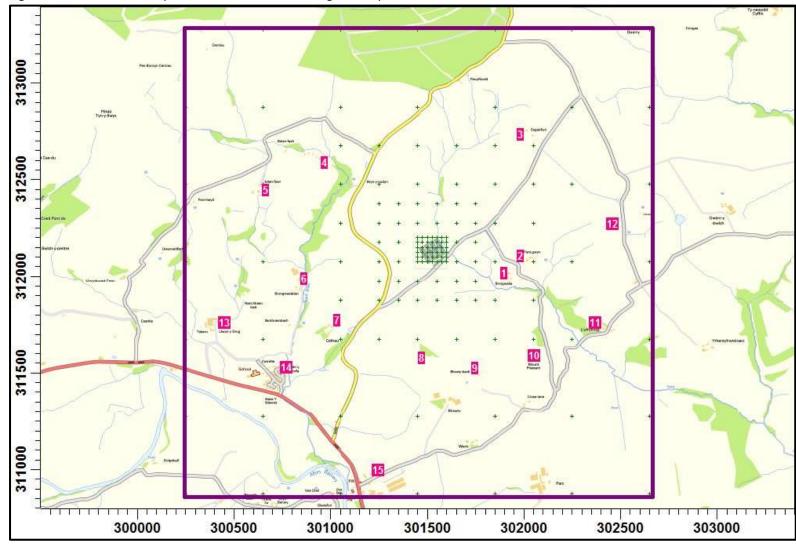


Figure 5. The discrete receptors and nested Cartesian grid receptors

© Crown copyright and database rights 2016.

5. Details of the Model Runs and Results

For this study ADMS was run in five modes:

- With the calms and with terrain modules of ADMS, GFS data
- Without calms or terrain, Lake Vyrnwy data
- Without calms or terrain, Shobdon data
- Without calms or terrain, RAF Shawbury data
- Without calms or terrain, Trawscoed data

For each of these modes, ADMS was effectively run twelve times, once for each year of the four year meteorological record and for each of the three crop cycles. Statistics for the annual 98th percentile hourly mean odour concentration at each receptor were compiled for each of the twelve runs.

A summary of the results of these runs at the discrete receptors is provided in Table 3 where the maximum annual 98th percentile hourly mean odour concentration is shown. A contour plot of the maximum annual 98th percentile hourly mean odour concentrations for the GFS model runs is shown in Figure 6.

In Table 3, predicted odour exposures in excess of the Environment Agency's benchmark of $3.0\,\mathrm{ou_E/m^3}$ as an annual 98^{th} percentile hourly mean are coloured blue; those in the range that UKWIR research suggests gives rise to a significant proportion of complaints, $5.0\,\mathrm{ou_E/m^3}$ to $10.0\,\mathrm{ou_E/m^3}$ as an annual 98^{th} percentile hourly mean, are coloured orange and predicted exposures likely to cause annoyance and complaint are coloured red.

Table 3. Predicted maximum annual 98th, 99.5th, and 99.8th percentile hourly mean odour concentrations at the discrete receptors

Receptor number X(m)		Y(m)	Name	Maximum annual 98 th percentile hourly mean odour concentration (ou _E /m ³)				
	X(m)			GFS Calms Terrain	Lake Vyrnwy No calms No terrain	Shobdon No calms No terrain	RAF Shawbury No calms No terrain	Trawscoed No calms No terrain
1	301898	312016	Bryngwalia	2.12	1.29	2.13	1.24	2.73
2	301984	312103	Pant-gwyn	2.20	1.48	1.89	1.32	1.86
3	301981	312732	Esgairllyn	0.73	0.83	0.72	0.74	0.62
4	300968	312588	Belan-fach	0.54	0.19	0.47	0.68	0.86
5	300663	312444	Belan-fawr	0.42	0.36	0.40	0.57	0.61
6	300864	311985	Bryngwaeddan	1.10	1.23	1.62	0.89	0.63
7	301035	311772	Cefnau	0.73	1.44	0.98	0.50	0.18
8	301472	311578	Blowry-bach	0.61	1.09	1.15	0.53	0.08
9	301749	311526	Blowry-bach	0.32	0.88	0.58	1.29	0.25
10	302054	311587	Mount Pleasant	0.48	0.38	0.64	0.67	0.65
11	302370	311760	Llyfryniog	0.39	0.27	0.65	0.28	0.82
12	302461	312268	Lluest	0.82	0.58	0.65	0.56	0.48
13	300453	311757	Llwyny Grug	0.36	0.63	0.75	0.36	0.16
14	300771	311529	Glan y Morfa	0.39	0.68	0.47	0.19	0.08
15	301248	310995	Llangadfan	0.32	0.45	0.32	0.10	0.01

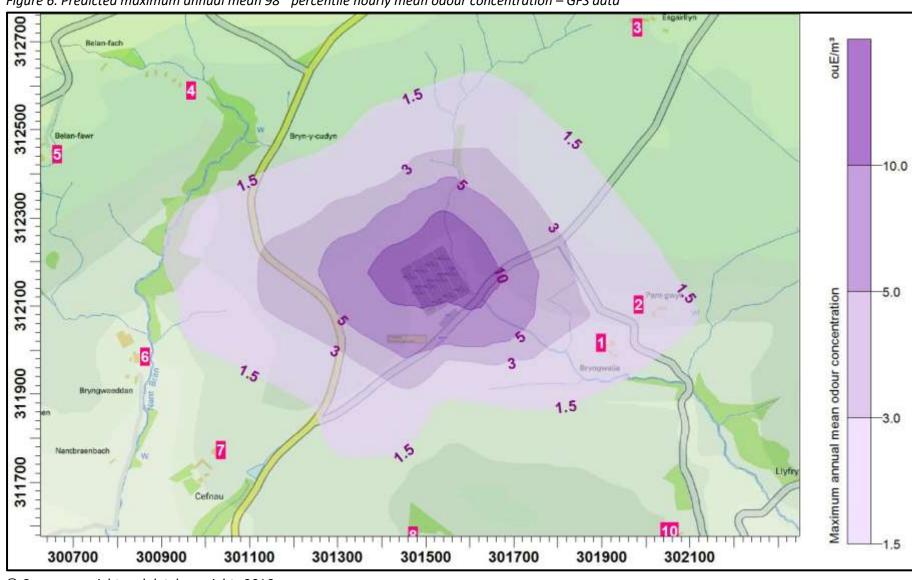


Figure 6. Predicted maximum annual mean 98th percentile hourly mean odour concentration – GFS data

© Crown copyright and database rights 2016.

6. Summary and Conclusions

AS Modelling & Data Ltd. has been instructed by John Ward, on behalf of the applicant Mills Poultry Ltd. to use computer modelling to assess the impact of odour emissions from the proposed new broiler chicken rearing unit at Cefnau Bach, near Llangadfan, Welshpool, in Powys.

Odour emission rates from the proposed poultry houses have been assessed and quantified based upon an emissions model that takes into account the likely internal odour concentrations and ventilation rates of the poultry houses. The odour emission rates so obtained have then been used as inputs to an atmospheric dispersion model which calculates odour exposure levels in the surrounding area.

The modelling predicts that at all nearby residences, the predicted 98^{th} percentile odour concentrations would be below the Environment Agency's benchmark for moderately offensive odours, a maximum annual 98^{th} percentile hourly mean concentration of $3.0 \text{ ou}_E/\text{m}$.

7. References

Environment Agency, April 2007. H4 Odour Management, How to comply with your environmental permit.

http://a0768b4a8a31e106d8b0-50dc802554eb38a24458b98ff72d550b.r19.cf3.rackcdn.com/geho0411btqm-e-e.pdf

Chartered Institution of Water and Environmental Management website. Control of Odour. http://www.ciwem.org/policy-and-international/policy-position-statements/control-of-odour.aspx

R. E. Lacey, S. Mukhtar, J. B. Carey and J. L. Ullman, 2004. A Review of Literature Concerning Odors, Ammonia, and Dust from Broiler Production Facilities. http://japr.fass.org/content/13/3/500.full.pdf+html

M. Navaratnasamy. Odour Emissions from Poultry Manure/Litter and Barns.

Fardausur Rahaman et al. ESTIMATION OF ODOUR EMISSIONS FROM BROILER FARMS – AN ALTERNATIVE APPROACH

A. P. Robertson *et al*, 2002. Commercial-scale Studies of the Effect of Broiler-protein Intake on Aerial Pollutant Emissions.

ROSS. Environmental Management in the Broiler House

Defra. Heat Stress in Poultry - Solving the Problem